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ABSTRACT 

Numerical   analysis   of  Markovian  queueing   networks, 

and   graphical   communication   of  problem  statements   and 

results,   offer  a  potential   for  truly   conversational 

use   of   computers   for   "high-traf fi"."   design   of   large- 

scale   systems.     However,   one   must   develop   a   translator which 

converts   the   pictorial   language   of  queueing   network 

diagrams   to   the   data   structures   required   for  efficient 

numerical   analysis.     This   requires   the  development   of new 

mathematical   models   for  networks,   and   for   the  meaning 

of  their   components.     Such  mathematical   models   are 

explored,   and   their role   in   the   development   of  adequate 

programming   systems   is   described. 

These   models,   algebraic   in   form,   provide   a  vehicle 

for  the   information   conveyed   directly  by  the  diagram, 

the   information   implicit   in   the   symbology   of   the   diagram, 

the   information  upon  which   the   actual   calculations   are 

performed,   and   the  procedure   which   transforms   the   infor- 

mation   from   the   form  of  the   diagram  to  the   form   for 

calculation. 
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NETWORK MODELS FOR THE CONVERSATIONAL 
DESIGN OF STOCHASTIC SERVICE SYSTEMS 

V. L. Wallace 
K. B. Irani 

1.  INTRODUCTION 

It is frequently desirable to design stochastic ser- 

vice systems which cannot be adequately analyzed by nor- 

mal queueing theoretic models.  Such systems consist, in 

the most usual instances, of numerous waiting lines (or 

"queues"), servers, and controlling or directing stations 

which determine the discipline of task flow through the 

system.  These systems are often realistic representations, 

for high-traffic design purposes, of behavior in diverse 

fields such as plant management, telephone switching, air 

traffic control, electronic warfare, logistics, and com- 

puter system specification and control. 

Improved techniques for the design of such systems 

are greatly needed.  For example, a design problem of this 

type which has not yet been adequately resolved is at the 

heart0of a current crisis in the development of execu- 

tive systems for demand-paged, multiprogrammed, timeshared 

computer systems.  Problems of this type are also found 

frequently in the course of selecting the equipment and 

executive control strategies which permit a modern large- 

scale computer system to serve a specific environment. 
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These problems have, in the past, required painstaking 

study and could not be answered generally enough to be 

treated routinely.  Increasingly, as the "computer 

utility" concept gains acceptance, these "queueing" 

problems will assume a more and more dominant position as 

the source of computer system inefficiency. 

Similar needs for improved techniques . e found 

everywhere that ^"^-traffic prob1^-- occur.  This is 

the natural result of the trend of every technology 

toward  ever larger and more complex systems, with ever 

greater levels of traffic.  New techniques should permit 

a more routine design of individual systems and stra- 

tegies for specific environments. 

One of the major hopes for significant improvement 

of design capabilities using queueing models lies in the 

so-called "conversational" computer techniques, whereby 

the calculating power of a computer can be closely coupled 

to the creative  power of a design engineer.  If a de- 

signer can freely pose alternative models to a computer 

and get immediate evaluation of various performance 

criteria, he may then generate enough  insight (via cut- 

and-try procedures) to guess a near-optimal design for a 

system far too large or tightly iiterrelated to be treated 

by conventional optimization techniques. 



However, the use of conversational techniques for the 

analysis and design of stochastic service systems requires 

development of a problem-oriented programming system 

which is specifically tailored to the demands of conver- 

sation.  The input language must be terse, the calcula- 

tions must be fast and reproducible, the variety of models 

available must be broad, and the results should be in a 

graphic, insight-provoking form. 

The most promising approach to developing such a 

system is to use graphic displays for the man-computer 

comminication, and to use recursive numerical methods [8] 

applied to Markovian models for the analysis.  Graphical 

input to the computer in the form of queueing network diagrams 

provides an ideally compact medium for description of 

problems, while an output in the form of graphs provides 

a suitably insight-provoking form for results. 

The recursive techniques provide fast calculations 

with excellent accuracy (hence reproducibi1ity) of the 

calculated results [9].  They also can be applied to a 

wide variety of models.  This variety of models is 

considerably broader than is feasible with closed form 

analysis, but not as general as the slower, less accurate 

simulation methods.  The detail available in numerically 

solvable models is also midway between that available using 

closed form analysis and simulation methods. 
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There are three basic operations involved in a pro- 

gramming system to serve these goals.  They are: 

1) the servicing of the graphic operations, 

2) the translation of the diagram to the form 

required for (Markov chain) input to the 

solution system, 

3) the solution of the Markov chain. 

The second of these is a process which, to our knowledge, 

has not been previously attempted, and has no obvious 

solution. 

The subject of this paper is the exploration of 

mathematical models for Markovian queueing ne works 

which can make this translation conceptually possible. 

(The models presented herein have been employed [3] 

in the development of specifications for such a 

translator, and an implementation of these specifications 

is currently in progress.) 

In the next section we will take a closer look at the 

prograifming system as a whole in order to detail the role 

of the translator and its parts.  Then, through the partial 

analogy of the better understood electric network models. 

Section 3 will attempt to provide a perspective for the 

queueing network models to be developed.  The subsequent 

sections will develop various aspects of the models. 



2.      THE   TRANSLATION   PROCESS 

Formal   representations   of Markovian   queueing   models 

in   network   diagram   form   are   actually  expressions   in   a 

graphical   language.      For   example,   the   simple   diagram  of 

Figure   2.1   is   a means   of   conveying   a  precise   meaning 

-*(   N 

Figure 2.1 

A Simple Network Diagram 

(in the form of a Markov chain) through pictorial symbols 

and syntax.  The small circle indicates a Poisson arrival 

source with mean intensity X, the large circle indicates 

a queue with a maximum length of N, the rectangle indicates 

a server with mean service time —. and the triangle indicates 

an exit from the system.  The lines indicate task flow 

according to rules established for each of the symbols 

j oined. 

The language of network diagrams is potentially a 

very rich tie.  It can contain symbols representing a 

considerable variety of sequencing rules, statistical 

properties, and selection processes.  A further example, 

Figur« 2.2, shows a network containing a random branch 

point, an overflow switch, and a merge point, in 

addition to the arrival source, queue, server, and exit. 

-5- 
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The language, at present, must be confined to one 

expressing systems which define finite Markov chains 

wi   stationary transition probabilities, due to the 

\». 
■\ 

2    J. 

-> ^ 

Figure 2 . 2 

A Less Trivial Network Diagram 

nature of the recursive numerical techniques to be used 

for solution.  Convenience dictates further that the 

systems define continuous-time Markov chains.  Specifi- 

cations of the desired results are also limited to those 

results which can be obtained by some operation upon the 

equilibrium state probabilities.  None of these restric- 

tions are oppressive however, as much can be done 

within them [9] . 

To put the model requirements in clearer perspective, 

it is helpful to view the structure of the entire programming 

system in a little more detail.  A schematic diagram 
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of such a system, as envisioned in this paper, is*own 

in Figure 2.3.  (The diagram shows the various processors 

as oval symbols, and the information structures as rectangles.) 

The first thing to be noted is that, in a real graphics 

system involving cathode-ray displays, the inpu^ to the 

system is not actually a network diagram.  Rather, it is 

a sequence of commands derived from the interpretation of 

light-pen or tablet stylus actions, and keyboard actions. 

These commands direct the construction of a diagram on the 

display screen and inform the programming system of the 

nature of the diagram and its desired output.  The commands 

and the diagram are equivalent expressions in two graphic 

languages, often called a control language and a display 

language, respectively [7].  The control language is the 

actual form of the input to the translator. 

A second observation about the system shown in Figure 

2.3 is that the  process of translating (indicated in the 

figure by the dotted rectangle) input commands from the 

control language to the form needed for analysis (the 

mat rlx structure) is divided into two stages, a command 

translator and a network t ranslator.  The intermediate 

form, which is a result of the command translator, is 

designated the network description structure. 

. 

mm 
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Functional Diagram of R Graphic, Conversational 

Programming System for Networks 
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The network description structure is the result of 

parsing the input expression and storing it in a form which 

can be more readily treated by a translator.  Mnemonics 

and graphics which are irrelevant to the meaning of the 

input expression (where "meaning" here is the information 

needed to form the matrix structure representation) 

have been removed, and the result put in good systematic 

form.  The practice of providing such an intermediate 

structure is well-established in programming-language 

translators because of simplifications it makes possible. 

In procedure-oriented compilers like MAD, ALGOL, or 

FORTRAN, the transformation to an intermediate structure 

is the first-pass operation which for algebraic state- 

ments often results in a list of triples, perhaps using 

Polish prefix form.  (The form of this structure for 

queueing networks will be discussed in Sec. 4.) 

Because of the potential richness of the network 

diagram language, and the interest in ease and flexibility 

of use, it is very desirable to encourage users to 

develop and use a shorthand notation.  This is assumed to 

be accomplished by making the translators table-driven, 

and providing a facility for the user to define his own 

symbols and their meaning through special commands.  The 

language treated is then an open-ended one, and the 

complex symbol graphics which would be r'^ded to differen- 

.• 
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tiate among symbols of a large vocabulary can be avoided. 

Also, since few symbols are used in any single group of 

problems, some unnecessary memory requirements (both in 

the computer and in the user's brainj for seldom-used 

symbols are avoided. 

The command translator associates with each symbol 

used in the commands a meaning supplied by the table.  This 

meaning is both pictorial and symbolic, the pictorial 

meaning being used in the formation of the network dia- 

gram displayed, and the symbolic meaning being used in the 

formation of the network description structure.  Some of 

the commands describe the solution desired and the form 

of its display.  The command translator must also parse 

these and place them in a structure called the ouput 

specification structure.  (The specifications so-described 

indicate, for example, which random variables of the 

queueing networks are to be examined, whether an expec- 

tation or a distribution function is to be displayed, and 

whether the result is to be displayed as a graph or a 

table.) 

The network translator associates with each symbol 

used in the network description structure a meaning supplied 

by the associated table.  This meaning is technical.  For 

example, if a symbol is known to represent a "server," 

the network translator must replace the "server" symbol 

by technical information which tells us all we need to know 
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about how the "server-ness" of the component affects the 

qualities of the matrix structure.  The network translator 

then can alter the form of this information to produce 

the matrix structure.  The tables can be readily changed 

as the user's vocabulary changes. 

The remainder of the system in Figure 2.3 is more or 

less self-explanatory.  The analyzer operates upon the 

Markovian model described by the matrix structure and 

determines a vector of equilibrium state probabilities, 

which is the "solution structure" of the figure.  These 

results are then processed according to the output 

specifications to provide the desired output of graphs 

and tables via the "output display file." 

From this survey of the parts of the programming 

system, we have seen that the heart of the translator 

is a table-driven processor (the "network translator") 

which takes a parsed description (the "network description") 

of the symbolic network diagram, associates meaning with 

its symbols, and prepares an output (the "matrix stricture") 

which is descriptive of a Markov chain in an easily 

solved form. 

To develop a translator program, however, a mathe- 

matical model is needed which unequivocally answers the 

four basic questions; 

■ 

. 

: 
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(A) What is the useful information directly conveyed 

by the diagram (as abstracted for the "network des- 

cription'^ ? 

(B) What is the information which must be presented 

to the analysis program (represented in the "matrix 

structure")? 

(C) What is the algebraic procedure corresponding to 

the transformation from network diagram to 

"matrix structure?" 

(D) What is the useful information indirectly 

conveyed by the symbols of the diagram (as 

represented in the "table" of the "network 

translator")? 

These questions are not unusual in the context of 

programming languages.  The tirst calls for syntactic 

description of the input language, the second calls 

for syntactic definition of the output language, the 

third calls for specification of the translation 

procedure, and the last calls for semantic definition 

of symbolic operators (like macro-definitions). 

However, models by which they can be answered for 

queueing networks have not oeen previously available. 

The model will be algebraic in nature so that the 

translation procedure can be completely described in 

algebraic terms.  Thus, it represents a new symbolic 
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framework in which queueing networks can be discussed with 

precision.  Because of the novelty of the model, however, 

it is helpful in this report to precede its description 

by an analogous description of a model for electric net- 

works, which are well understood.  The functional diagram 

of Figure 2.3 is equally appropriate as a description of 

a system for analysis and design of electric networks, 

and therefore such a description will provide a good 

conceptual framework for all the work that follows. 



3.  ELECTRIC NETWORKS: A PARTIAL ANALOGY 

It will be supposed, for simplicity, that the 

electric networks to bemodeled are linear, finite, passive, 

bilateral, and initially quiescent; that the solution 

required is a transient analysis of the voltage at 

particular nodes; and that sources will be solely 

current sources in the form of step functions.  The 

network diagrams would be like that of Figure 3.1.  These 

would somehow be translated into matrices which define 

sets of "node equations" for the networks. 

•  1 

-G2 
vv. 

i (' Gr ^"C 
•   •   « 

L3  C3 V 

Figure 3.1 

An Electric Network 

An electric network diagram such as the one in 

Figure 3.1 consists of a collection of branches representing 

generic things like "resistors," "capacitors," and "current 

14- 
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sources."  Eacli branch has two identifiable terminals, 

and the terminals of all the branches are joined in groups 

to form "nodes."  In addition, each branch lias a parameter 

(e.g., G., L , C , L., L_, etc.) adjoined to it which 

modifies its generic description in some as yet undes- 

cribed manner. 

We know, from classical electric network theory, 

that the meaning of this network diagram is ultimately 

a mathematical relationship between independent current 

source values and electrical potentials imagined to be 

present in the network.  Making the usual assumption that 

the potentials are measured relative to the datum (bottom) 

node, there is one unknown potential (a function of time) 

for each nondatum node.  If we represent these potentials 

by a vector V of their Laplace transforms, then the 

relationship can be expressed by the matrix equation 

YV (3.1) 

where Visa matrix of t rans form admi ttances , and  I 

is a vector of (Laplace) t ransformed node-driving current s 

These latter two objects are uniquely determined from the 

information available in the diagram, and would represent 

the information stored in the matrix structure defined in 

■: 
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Figure 2.3.  When they are known, the solution  V  can 

be obtained by well-known numerical methods. 

Our purpose in this section is to show how  Y 

and  I  can be routinely found from the network diagram, 

so that insight can be gained into the more complex 

procedure needed for queueing networks. 

The first step is to transliterate the network 

diagram into a neater abstraction of its explicit content 

Let a network  N   be defined simply by a collection  L 

of branches and a collection  K  of nodes, so that 

N = <L,K> 
e 

L = U. : je Jj} 

K = {k.  :je J2}, 

(3.2) 

(3.3) 

(3.4) 

where  J   and  J?  are  index sets.  Furthermore, let. 

a branch  £., je J. , be defined by the three things which 

identify it uniquely:  a generic "type value"  X.  (which 

may take on values of "resistor," "capacitor," "inductor," 

and "current source"), a real parameter value  a. 

(providing the value of resistance, capacitance, inductance, 

or current, as appropriate), and an ordered pair  T. 

of "terminals" (directivity is important to sources, and 

useful for the other branch types).  Thus 

I.   = <A., a . , T.>  je J. 
J     3 J        J    . 1 

(3.5) 

A node  k , je J , is merely a set of terminals such that 
J      2 
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each terminal is contained by exactly one of the nodes in 

K .  In other words, the  k.  are defined so that 

u 
j e J. 

k. = T 
J 

(5.6) 

and 

k H k   e 0, all j ,j e J (3.7) 

where </>     is the empty set, and  T  is the set of all 

terminals in all the  T., je J.. 
J 1 

Thus,   in   this   notation,   an   arbitrary   network   has   been 

defined   in  terms   of  two  primitive   classes   of  objects: 

terminals,   and   generic   types   of  branches.      The   first 

is   merely   a   vehicle   for   topological   (graph)   information 

about   the  diagram.      The   second  represents   the   generic 

identification   of  the   graphics   used   for   the  branches 

in   the   diagram,   and   has   the   four  possible   values: 

"resistor,"   "inductor,"   "capacitor,"   and   "current   source," 

corresponding   to   the   four  graphics   available   to   the  drawer 

of   the   diagram.      The   model   described  by   Eqs.    (3.2)   through 

(3,7)    is   an   algebraic   representation   of   the   network   descrip- 

t ion   structure   of   Figure   2.3. 

The   second   step   is   to   extend  this   model   of   a  network 

by   replacing   the branch-type   designation   by   a  model   of  its 

distinctive   meaning.      This   meaning   was   implicit   in   the 

diagram,   in   the    snse   that   the   user   left   it   understood   in 

the notation  of  the   diagram.     The  extension   of  the  model 

■■■HRHMWMi 



18 

will make it explicit, and by so doing will allow us to 

use it in forming  Y  and  I .  if the model is general 

enough, it will also permit the introduction of new branch- 

type constants for the desirable kind of language 

flexibility proposed in the introduction. 

A model to fit the purpose is readily found from 

electric network theory.  The type designation 

of a branch t.      can be replaced by a pair of quantities— 

the so-called short circuit current of the branch, and its 

Norton admittance—and satisfactorily fulfill the re- 

quirements.  If we let  i.  represent the Laplace 

trinsform of the former, and let  y.  represent the latter, 

then the definition of the network  N   is extended by the 
e 

equation 

\j * <i.,y.>,   je J1 (3.8) 

The two quantities are found for a given branch, when the 

type designator and parameter value are known, by inspec- 

tion of Table 3.1.  Recall that current sources were 

defined, for this system, to be strictly step functions, 

and the parameters of branches of current - source type were 

defined to be real constants, the amplitude of the step. 

Thus the transform of the short-circuit current of a 

source with parameter  I,  is  1,/s.  The entries in the 

table represent the coefficients of a linear equation 

relating an assumed transformed branch current  1. to a 
J 



Type   of   Designator   A. 

"Res i stor" 

"Inductor" 

"Capaci tor" 

"Current   Source" 

Table   3.1 

Defining   Branch   Types 

Parameter  Value   a 

G 

L 

J ■} 

Ü G 

0 1 
sL 

0 sC 

I 
0 

transformed branch voltage  V. , in such a way that 

I . = i. + y. V. 
J    J    J  J 

(3.9) 

Figure   3.2   defines   this   assumed   pair  of  variables   for   abranch 

il 
V. 

T- 
Figure 3.2 

Defining Branch Voltage and Current 

19- 
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having terminal pair  T. = <t, .t>.  Table 3.1 plays the 

role of the table of the network translator in the program 

ming system of Figure 2.3 

Indeed, it is well known (by Norton's theorem) that 

any two-terminal fragment of the networks being treated 

here can be represented by a pair like that shown in 

Eq. 3.8.  Thus, to define new fundamental symbols to 

represent any such two-terminal network fragment, one 

need only append additional lines to Table 3.1  If, in 

addition, vector value parameters  (a.)  are permitted, 

a model has been introduced which has considerable power 

to accept shorthand notation in the network diagrams. 

For example, if an appropriate new symbol were defined for 

tiie  G-L-C  parallel circuit. Figure 3.1 might have been 

drawn equivalently as Figure 3.3.  The newly defined 

branches have a vector parameter giving conductance, 

inductance, and capacitance.  Other ways to use the 

parameters, of course, also exist. 

The third, and final, step in the process is to derive 

the matiix    Y  and the vector  I  from the network model 

described by Eqs. (3.2) - (3.8).  For electric networks, 

this also is a simple operation, derived directly from 

Ki rchoff's laws. 
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Figure 3. 3 

An Kquivalent Network to Figure 3.1 

Basic to the procedure is the calculation of a matrix 

A  known as the branch-node incidence matrix.  It can 

be routinely constructed from an inspection of the terminal 

pairs  T., je J. , and the terminal sets  k., je J. , called 

nodes.  (The exact procedure is not important here.) 

Then, if we write the symbol  i  for a vector of the short 

circuit currents  i.  for all branches, the node current 
J 

vector  I  is simply 

T 
I - A i. (3.10) 

where  A   is the transpose of the matrix  A .  Furthermore, 

if we construct a diagonal matrix  y  whose diagonal ele- 

ments are the Norton admittances  y.  for each branch, 

then the matrix  Y  is simply 
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Y = A  yA. (3.11) 

This completes the description of the process of translating 

from diagram to matrix structure. 

The four questions of Section 2 have been 

answered.  Equations (3.2) through (3.7) represent the syn- 

tax of the network diagram, answering question A.  The 

matrix  Y  and the vector  I  of Eq. (3.1) represent 

the object of translation, answering question B.  The 

translation procedure is the described procedure for the 

creation of the matrix  A , the calculation of  I  (via 

Eq. (3.10)), and the calculation of  Y  (via Eq. (3.11)), 

and is the ans., er to question C.  Lastly, equation (3.8) 

and Table (3.1) represent the semantics of the elements, 

answering question D. 

It is interesting to note that the discussion proceeded 

at at least three different levels of abstraction.  First 

there was the network diagram, in which technological 

characteristics were understood but not in evidence.  That 

is, things like voltages, currents, admittances, etc. were 

entirely suppressed.  Second, there was the level of the 

models, in which al] meaning was expressed in algebraic 

and functional terms.  The operations were performed by 
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observing set memberships or by multiplying matrices and 

vectors.  Third, there was the level of the technology 

represented by the models.  At this level, the funda- 

mental operations of the lower level are validated and 

explained in terms of physical laws (Ohm's law, Kirchoff's 

laws) and in terms of theorems about them (Norton's 

theorem, Superposition, etc.).  These three levels will 

also be found in the development of the queueing network 

models. 

• 



4.  DESCRIPTION OF QUEUEING NETWORK DIAGRAMS 

In this section, the "syntax" of queueing network 

diagrams will be described as a means of answering the 

first of the four basic questions, "What is the information 

directly conveyed by the diagram?"  The treatment will 

be analogous to that of electric networks (Sec. 3). 

We postulate, from observation of queueing network 

diagrams like those of Figures 1.1 and 1.2, that a queue- 

ing network consists of a set of distinct objects which 

will be called elements , and a set of connections among 

them.  The elements represent generic things like "queues," 

"servers," "sources," etc.  They usually have parameters 

associated with them. The connect ions join distinct, 

identifiable parts of the element, which will be called ports 

Only one connection can be made to a port. 

There is some minor controversy over whether things 

like the random branch and the priority branch, as used 

in Figure 2.2, are rightly considered elements or connec- 

tions.  Philosophically, one can go either way.  If 

they are elements, then connections are merely associ- 

ations of pairs of ports.  If they are connections, then 

every connection must be regarded as an instance of one of 

several types of connections (simple, random branch, 

priority branch,., etc.) , and it is sometimes necessary to 

associate parameters with them (viz., the branch 

-24- 
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probabilities on the random branch).  In this report, 

we have chosen the latter formulation (multiple connection 

types) because it results in simpler models of the ele- 

ments when great generality of admissable element- 

types is not required.  It is, thus, a useful compromise 

for a first attempt at implementation. 

The essential information in the above description 

of the retwork diagram may be succinctly summarized by 

saying that a network  N  consists of a set  E  of 

elements and a set  C  of connections, and that an 

element  e.  or a connection  c.  consists of a type 
i i / r 

identifier  T. ,a parameter set  p. , and a port set 

P. .  Thus 
i 

N = <E, C> 

E = {e^ie I ^ 

C = {c.:ie I2} 

e. = <!., p., P.>, all i e I x i' Ki   i ' i 

c. = <T., p., P.>, all i e I. 
i i' Ki   i ' 2 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where  I. and !_  are disjoint index sets.  Every port 

in the network belongs to exactly one element port set 

P., ie I.,  and exactly one connection port set  P., ie I  , 

The number of prts in a port set  P.  is a function of 

the type and, in general, parameter values of the correspon- 

ding element or connection. 
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Equations (4.1) through (4.5) have an analogous 

purpose to that of Eqs. (3.2) through (3.7).  They 

represent a mathematical model of queueing network 

diagrams.  The element-types, connect ion-types, and 

ports are the primitive classes of objects in terms of 

which a class of things called queueing networks can 

be defined.  This definition is a very general one, 

capable of allowing an enormous variety of networks to 

be represented.  However, in particular instances of 

application it may be restricted, just as electric 

networks are often restricted to subclasses like "planar 

networks," "ladder networks," or the like.  Furthermore, 

by restricting the allowed symbol types, the language 

can be further limited in specific applications, as in 

the case of "linear" electric networks, or "passive" 

electric networks. 



5.  A MODEL FOR THE MATRIX STRUCTURE 

In this section we will concern ourselves with the 

second question describing models for the information 

represented in the "matrix structure," the output form 

of the translator. 

The matrix structure must describe a finite state, 

cont inuous -1 ime Markov chain  (^ : t>J3}  with stationary 

transition probabilities, in a form suitable for efficient 

numerical calculation of the equilibrium probabilities and 

efficient identification of the states to which the 

probabilities correspond.  Traditionally, a Markov chain 

of the nbove type is described by a matrix  Q = (q   ), 
r, s 

r,seS , of transition intensities, where  S  is the set of 

states, and 

'rs 
= IT  Prtxt s X 0 

q  > 0, Mrs—  ' 

I 
seS ^rs 

r]|t=0+  , all r,se S,  (5.1) 

all r,se S; r ^ s    (5.2) 

0. al1 reS (5.3) 

(An alternative interpretation of  q    is that its r Mrs 

reciprocal represents the conditional expectation of the 

time interval during which a sample  X (w)  of the process 

remains in state  r , given that it will jump from 

the state  r  to the state  s  at the end of the interval. 

It is also well known  that, for these processes, all 

such intervals are exponentially distributed random 

-27- 
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variables, independent conditionally upon the state  r 

and  s . ) 

The equilibrium probabilities  TT   for each state  r 

in  S , are determined by a solution to the equations 

Z  TT  q   =0, for seS, 
reS  ^ Hrs    ' 

and 

Z   TT   =  1 
reS  r 

(5.4) 

(5.5) 

Thus, for our purposes, the information which must be 

provided as output from the translator (and hence input 

to the analyzer) must describe the state set  S  and the 

matrix  Q . 

The matrix  Q  is related to the network diagram in 

a complicated way, so that it is necessary to use an 

equivalent form which has an easy "physical" inter- 

pretation in terms of the network components, and yet 

can still be used like the matrix  Q  in numerical 

solution of Eq. 5.4.  This equivalent form is developed 

by modeling the notion of "events" of the network. 

For example, consider the network of Figure 2.1. 

In that example the states can be regarded as two-dimen- 

sional vectors  <x ,x2> , the first coordinate  (x ) 

being the number of tasks in the queue, and the second 

(x^)  being the number of tasks in service  (0 or 1) . 

The state set is  S = {<0,0>,<0,1>,<1 , 1> , .. . , <N,1>} . 
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There are two "events" which occur: "task arrivals" 

and "task completions."  If we can model these alge- 

braically, and show that the r-.odel is equivalent to a 

description of  Q , then we have a way of conceptually 

relating the diagram to the matrix.  (In general, the 

events will be associated with specific network components 

in speci fie ways ."! 

One such model is to consider the "events" of a 

network as a set of triples whose first component 

describes the set of states at which the event can occur, 

whose second component describes the resulting state as a 

function of prior state, and whose third component des- 

cribes the probability intensity of occurrence of the 

event.  Proceeding with our example, the states for which 

an "arrival" can occur are all those for which the queue is 

not full, and it results in an increment of  x,  by one, 

except when the server is empty  (x» = 0)  when it 

increases  x2  by one.  This event occurs with probability 

intensity  X , so that the event could be written 

^1 = <b
1'
h
1'V

|
1
> (5.6) 

where 

b1 = S-{<N,1>} = {<0,0>,<0,1>,<1,1>,. . . ,<(N-1),!>} , 



h 1 (x 1 , x 2 ) = 

3Ü- 

:0 , 1>,   when <\    ,x1>   = <0,0> 

<x  + 1 , x , > , elsewhere in b , 

and 

ul   -   X 

Similarly, the "completion" event can occur only when 

x- >ü, it results in a decrease of queue length  x. 

whenever  x. > Ü or in emptying the serverif  x  = 0 , 

and it occurs with probability intensity  u . 

Thus, the event can be written 

C2 = <b2.h2.y2> (5.7) 

where 

b2 =   S-{0,0>}= {<0,1>,<1 , 1>, . . . ,<N,1>} 

and 

h2(x1,x2) 

y2 = u 

<0,0>,  when<x,x2> = <0,1> 

<x.-l,x_>, elsewhere in b-, 

In this example, then, the set of events is 

5 - Uj,^} . (5.8) 

Following this approach in general, let  E , the set 

of events of a network, be an indexed set 

5 = Uk: k« Kj}, (5.9) 
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where, for all  k e K, £ is a triple 

^k = ^k^k'^k"' 
5. 10) 

and where  b   is a subset cf  S,  1^ is a function 

on  b,  to  S , and u■  is a positive constant. 

This model of network activity is readily shown 

to be equivalent to the matrix  Q .  Observe that each 

event E,       describes a set of transitions having a 

p.irticular intensity, and thus can be viewed as pre- 

cisely describing an elementary transition matrix  Q, 

having a very special form.  The set  b,  identifies 

the rows of  Q.  which have nonzero entries, the function 

h,  defines the column  h.(r)  in which a single nonzero 

off-diagonal entry of the rth röw  (r e bk)  appears, and 

the constant  u,  defines the value of that element as well 
k 

as the negative of the diagonal entry of the rth row 

(row sums must be zero). The matrix Q can be con- 

structed from  E  by summing 

Q =  Z    Q 
keK, 

(5.11) 

Furthermore, since any matrix  Q  can be written as a 

finite sum of such matrices  Q. , one can always construct 

a (non-unique) set  5  from any  Q .  (Of course, the 

events so constructed will not always have a useful 
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physical interpretation unless the component  Qi, 's 

are chosen well.)  This shows the equivalence between 

E  and  Q . 

The even-, set  5  is the intermediate form which is 

the object of network translation and the subject of 

numerical analysis.  The matrix structure is a computer 

representation of this set. 



A NETWORK TECHNOLOGY 

At this point the fourth question, "What is the 

useful informatien indirectly conveyed by the symbols 

of the diagram?" will be discussed in general terms. 

The physical connection between element and network, 

between the whole and its parts, will be explored.  A 

more detailed model, under specific limitations of 

application, will be deferred to Section 8. 

In the previous section, we have seen that a network 

can be described by a state set and an event set.  Our 

intuition tells us that individual elements of the network 

ought also to have things like states and events, or 

how else could we refer to the "length" of a queue, or the 

"occurrence of an arrival" in a source element with such 

disdain for the identification of their neighbors?  In 

this section a generalized interpretation of elements and 

connections in such intuitive terms will be explored, so 

i!4 that algebraic definitions for element-types and connection- 

types can bear a realistic interpretation.  The algebraic 

' 
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definitions, which will be developed in Section 8, will 

be more specific and limited than these interpretations, 

just as the  <I.,Y.>  definition for electric branch 
J  J 

types applies to much more restricted electric net- 

works than a discussion of Kirchoff's laws would require. 

To be concrete, let us first describe what we consider 

a "server" to be.  It is an object which can be in one of 

three possible states:  "idle," "busy," or "completed." 

This state can change in three possible ways!  (1) If 

the server is in the "busy" condition, a "service comple- 

tion" may occur.  (2)  If the server is in the "idle" 

condition, an "input" may occur at its input port. 

(3)  If the server is in the "completed" state, an 

"output" may occur.  The first of these is regarded to 

occur at random times which are determined within the 

server itself, without regard to occurrences elsewhere 

in the network containing the server.  The second and 

third occur at times determined by the element or ele- 

ments connected to the server at the input and output 

ports, respectively.  (These latter elements will be 

called the associates of the server at the respective 

ports.)  Thus the occurrences which produce changes are 

more fundamentally of only two types:  those which are 

seif-generated (or autogenous) and those which are 

externally generated (or exogenous). 
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The change in state resulting from a "service 

completion" depends upon the condition of its input 

and output associate.  If the input associate "can 

supply an output," and the output associate "can accept 

an input," then the service completion will immediately 

cause both an input to its output associate and an output 

from its input associate to occur, but will remain in 

the "busy" state.  In other words, it has produced 

exogenous occurrences for both associates, but its own 

state hasn't changed.  On the other hand, if the output 

associate could not "accept an input,"  the server would 

change to the "completed" state, waiting until the output 

associate requests an output (i.e., produces an exogenous 

occurrence at the output port).  If the input associate 

cannot "supply an output" but the output associate can 

"accept an input," then the server will change to the 

"idle" state, and cause an input to the output associate 

to occur. 

An "input" occurrence or an "output" occurrence 

resulting from an external cause (i.e., exogenous 

occurrence) produces changes in state which are similarly 

dependent upon properties of the associates.  An "input" 

will produce a change from "idle" state to "busy."  An 

output when the input associate "can supply an output" 

results in change from "completed" to "busy"; otherwise 

the change is from "completed" to "idle." 
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The above description is a slightly abstracted ver- 

sion of our normal concept of the properties of a server. 

Other interpretations in terms of task flow, or similar 

notions, will be equivalent and perhaps more easily 

followed.  From this illustration it should be easier 

to abstract further the principles which will be common 

to all elements. 

First, elements relate to one another only through 

variables identified with their ports.  These variables 

must have an interpretation which is the same for every 

element, so that any element may be used as an associate 

of another without alteration of the definition  of either. 

These variables will be referred to as endoconditions 

at the respective ports.  They represent all of the 

information about ar. element which is needed to describe 

its associate.  If the associate is a server, the in- 

formation needed must tell us, at least, whether or not 

the element is able to "accept an input" or "supply an 

output" (depending on whether the port in question is in- 

put or output).  Depending upon how broad the class of 

networks to be represented, the endocondition may be 

interpreted in different ways.  If multiple task transfers 

between elements are possible (as when a bulk server can 

be represented), the endocondition might describe "the 

number of tasks which can be accepted (supplied) at an 

input (output) port." Where networks are restricted 

by limitations on allowed vocabulary or syntax  to one- 
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task-at-a-time trans fers, then a simple two-valued 

endocondition suffices. 

Second, each element must have a set of states 

which adequately describes its behavior.  In the server, 

this set has three members.  In the queue it has as many 

members as there are allowed lengths of the queue. 

The state set of the network is contained in the Cartesian 

product of each element state set.  The element state is 

a projection of the network state.  The endocondition is a 

function of the state of the element, and sometimes must 

be a function of the endoconditions of the associates as 

well. 

Third, each element has a set (perhaps empty) of 

objects which will be called autogenous events.  These 

are descriptions of the autogenous occurrences and the 

state changes that result from them.  The state change is 

generally a function of the state of the dement and of the 

endoconditions of the associates at all the ports. 

(Although there is only one autogenous event in the 

server, there are elements which have more than one, hence 

our reference to a set of them.  A queue has nc auto- 

genous events.)  Typical autogenous events represent 

service completions in a server, and arrivals in a source 

element . 
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Finally, each element will have exogenous events 

associated with its ports.  These describe the exogenous 

occurrences and the state changes that result from them. 

As in the case of autogenous events, the state changes are 

functions (perhaps random) of both the state and the endo- 

conditions of the associates at the other ports. Typical 

exogenous events represent the act of inputting a "task" 

or a "customer" at an input port or of outputting one at an 

output port.  (Notice that logically both of these acts 

appear to be instances of a single type of object, an 

exogenous occurrence, and that only the words we use in 

the interpretation are different.) 

In some classes of networks, these two exogenous 

occurrences are the only ones which can occur.  In other 

classes, such as those including bulk service elements, 

one can have an input of one task, two tasks, or three 

tasks, etc.  In that case one must identify which of the 

possible occurrences, determined by the associate, has 

occurred.  To this purpose we must identify another 

variable, designated an endocontrol, which identifies 

which of the possible occurrences is occurring at a parti- 

cular port; for example, "the number of tasks being 

transferred through the port," would be an interpretation 

of an endocontrol.  The exogenous events of an element 

at a port will also be functions of this endocontrol of the 
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associate at that port.  When this device is needed, 

every autogenous and exogenous event must define the 

endocontrols at the ports at the same time it defines 

the transi tions, 

Connections other than "simple" connections serve 

as a device to alter the identification of the endocondi- 

tions of associates to the variables which events depend 

upon.  For example, if a server is connected to two other 

elements through a "priority branch" connection at its 

output, then as far as the server is concerned the asso- 

ciates can "accept an input" as long as either one (or 

both) of them can accept an input, because if the high 

priority path cannot accept an input, the low priority 

path is polled.  Similarly, the non-"simple" connections 

alter the identification of the endocontrols.  The number 

of tasks transferred into an input port which is connected 

to a low priority path of a priority branch connection is 

the number provided by the supplying associate, less the 

number transferred into the high priority associate. 

The above discussion implies that the states and events 

of the network  can, through the suitable introduction 

of interface variables (endoconditions and endocontrols), 

be broken up into pieces, each of which is completely 

described as a property of an individual element without 

consideration of that element's context in the full 

network.  Every network event describes the result of a 
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chain of element events originating from a single auto- 

genous event in one element and propagating to its 

associates through the effect of exogenous events at 

the joined ports.  The exogenous events in turn involve 

the associates of the associates the same way, until 

finally the entire influence of the autogenous event 

has been traced out. 

That states and events of the network can be broken 

up in this way will, in the last analysis, be demon- 

strated only by the consistency and interpretabi1ity 

of detailed algebraic systems defined for specific 

classes of networks using this notion. 



7.  EQUIVALENCE AND CONSOLIDATION 

The interpretation used above represents a view- 

point which is the basis for more precise definitions 

of the entities described by queueing networks and their 

components.  Much remains to be done in formalizing it, 

and developing theorems about and classifications 

of such networks.  However, it is not necessary to have 

a complete, general theory before useful algebraic 

definitions, especially for specialized subclasses of 

networks, can be devised and translators developed. 

Nevertheless, to be useful these specialized definitions 

must have properties which are consistent with concepts 

intuitively underlying all network theory. 

One of these concepts is the concept,  of equivalence 

of subnetworks and networks.  Out of this concept will 

come, almost incidentally, a basic scheme for trans- 

forming the network diagram to the matrix structure, 

and providing an answer for the third of our basic 

questions.  The basic notion of equivalence says that it 

should be possible to take any repeatable fragment of 

a network diagram and call it: a new type of network 

element.  For example, any of the objects in the boxes 

in Figure 7.1 should be suitable elements, with the ports 

shown, if the primitive components are.  Of course, the 

graphics would not necessarily be those shown, and would 

probably be much more abbreviated. 

-41- 
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^  U 

Figure   7.1 

Some   Nonprimitive   Elements 

The   network   resulting   from   replacing   these       ^   ents 

or   "subnetworks"   by   elements   of  newly   defined   e'ement- 

type   should   then   be   equivalent   in   the   sense   that   the 

same   state   set     S     and   event   set  H   should   describe   it. 

Thus,   Figure   7.2   shows   a   network   which   is   equivalent 

to   that   of  Figure   2.1,   but   uses   one   of  the   new   elements 

^©-Q 

Figure 7.2 

An Equivalent Network 

of Figure 7.1. 

As a consequence of this   view, there must be an 

operator which maps connected sets of eiementr. into 

"equivalent" elements by "absorbing" the connection which 

joins them. We have named this the operation of consolidat i on 
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Any definition of element types must be sucli that 

this operation can he defined for all syntactically 

al'owed combinations of connections and elements 

and the result should also be an element.  Thus, in an 

abstract sense, the element types must have such a form 

that the set of a 11 possible element-types is closed 

ui. ler the operation of consolidation.  This is an im- 

portant property of the algebraic models, and offers 

a considerable variety of the element types. 

A consequence of this property is that the network 

i t i e1f must have an equivalent element: one which contains 

no ports.  Indeed, such an element must constitute a 

canonical form for a class of equivalent networks 

derived by various applications of the consolidation 

operator to the original network.  That canonical form 

may be found by repeated application of the operator 

until no connections remain. 

This procedure describes a potential procedure for 

the translation of the network diagram to the matrix 

structure.  The consolidation operator is repeatedly 

applied until only one element remains.  This element 

e* has no ports, hence no exogenous events and endo- 

or cxo-conditions.  It will have only a state set  S* 

and an autogenous event set  H* .  With suitable 

definitions, these two quantities should be readily 

identifiable with, if not identical to, the state set  S 

and event set  5  of the network. 



8.  A MODliL FOR THE SYMBOL SEMANTICS 

The network technology discussed above was intended 

to provide a framework in which to develop models for the 

element-types and connect ion-types.  These models would 

represent an answer to the fourth and last question, 

explicitly describing the information implicitly pro- 

vided by the user.  They would also be of such a form that 

the consolidation operator was well-defined, or that the 

translation process could be otherwise described as an 

algebraic operation upon a kno^n set of operands, analo- 

gous  to the form  <i..y.>  of branch-types in electric 
j  J 

networks. 

Only one such model will be described here.  This 

model will be a relatively simple one specifically 

designed to represent networks containing (at least) 

queues, simple servers, infinite sources, and exits, 

with connections including simple, random branch, and 

priority branches.  Of course, in view of the equivalence 

properties posed in the previous section, many other ele- 

ment-types will also be represent ab 1e either because 

they are equivalent to a network fragment containing 

only the above primitive components, or because of 

inherent (albeit accidentical) extra generality built into 

the model.  The use of limited models of this type is 

analogous to the limitations (linear, finite, no-voltage- 

-44 
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source, etc.) which are usually placed on electric 

network models.  The justification is solely one of 

compromise between simplicity and utility. 

An element-type  T., iel , has a value which is a 

triple consisting of a state set  S. , an  autogenous 

event set  5. , and an exogenous event function  Z. 
i e    i 

T. = <S. ,5. , Z. > , iel.. 
i     ill'    1 

(8.1) 

Each   of  these  will   now   be  defined   in   greater   detail. 

The   state   set     S.      of  an  element     e.      is   a   finite set 
i i 

of nonnegative integer n-tuples, where the dimension 

of the n-tuples is characteristic of the element-type. 

For each of the four primitives it is one-dimensional. 

By definition, an autogenous event  £,  of an element 

e.  having state set  S.  is taken to be a triple 

h s <1
V*JI'V (8.2) 

■ 

where 

b. is a subset of  S. 
i i 

g. is a constant n-tuple, such that for each 

X€lV x * g£ is in  Si 

Mj is a positive real number 

I  is an index in an index set  L.. 
i 
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Here  b   is called the autocondition set of the event 

£. , and represents a set of states for which the event 

is possible;  the constant  y.  is called the rate 

of the event, and represents the probability intensity 

of its occurrences; the constant n-tuple  g.  is called 

the increment, and represents the change in state which 

results from the occurrence of the event.  (Notice that 

the change in state has been here specialized to being 

dependent only on state, not on exoconditions, and being 

a constant increment.) 

To illustrate, consider the "service completion" 

event  £    for a server having a mean service rate 
al 

(parameter) y   .     The event can occur only in the busy 

state, state  1 , and when in that state it occurs 

with probability intensity y   .  The event causes a change 

from state  1  to the holding state, state  2 , so that the 

change is unity.  Thus, 

£   = <{!}, 1,Y>. 
al 

(8.3) 

The autogenous event set 

autogenous events 

consists of a set of 

. - U^UL.}. (8.4) 

- 
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By dtfinition an exogenous event  C   at a port  p 

of an element  e.  having a state set  S.  is taken also 
i      6 i 

tobe a triple 

C  = <b ,g ,7T > (8.5) 

where 

b  is a subset of  S. 
m i 

g  is a constant n-tuple such that for each 

xeb , x + g  is in  S. 

TT  is a probability 

m is an index in some index set. 

Here  b   is the endocondition set, and represents the 
m           '       r 

set of states for which the endocondition is nonzero (e.g., 

if the port  p  is an input port,  b  is the set of states 

for which a- input of a task can be accepted); the 

probability  ^   is the probability, given that the 

stimulus (e.g., an input of a task) has occurred and that 

the element is in a state of  b  , that the change in 
m 

state produced is equal to  g  , the increment of the event 

An example of an exogenous event is the "input 

of a task" event (call it  C  !/ at the input port  p 
a2 

of a queue whose maximum length is  N .   An input can 

be allowed only when the state is less than  N , and it 

results, with certainty, in an increase of the state by 

unity.  Thus 
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C   = <{0>1,....N-1},1,1> (8.6) 

for  N>1 . 

For every port  p  of an element  e.  there is an 

exogenous event set  Z.(p) , representing all the possible 

responses to the external stimulus at the port  p . 

The function  Z.  has been called the exogenous event 

function, and it is a function on  P.  to a set of triples 

like Eq. 8.5.  The set  Z.(p)  is a set of exogenous 

events whose probabilities add up to zero or one for 

each state of the element.  Let 

Zi(P) = {?m
:meMi(P)}'  a11 peP^ielj.      (8.7) 

where the index sets  M.(p)  are disjoint for all  p 

and  i .  Then 

I 
m 
xeb 

IT  = 0 or 1 
m 

(8.8) 

m 

for each  xeS. .  Those states for which this sum is zero 

are states for which the external stimulus cannot occur, 

such as, for example, the states where an input task 

cannot be accepted. 

Table 8.1 verifies that each of the primitive 

element types can be represented by this model.  A 

verification that the set of types so-defined is closed 

under the operation of consolidation is not easily shown. 
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and will be accepted here without proof.  Moreover, the 

operation of consolidation will not be defined although 

it, in fact^ constitutes a definition of the connection 

types.  The reader is referred to ref.[3j for a more 

complete discussion of consolidation.  It will merely be 

noted that, if every connection has been eliminated from 

the network by the process of consolidation, as proposed 

in Section 7, the result will be a network consisting of 

a single element whose port set is empty, hence whose 

exogenous event function is a function whose domain is 

empty.  Thus the type information merely describes a set 

of states and a set of autogenous events, the latter 

being, in fact, the events required in the matrix model 

of Section 5. 



9.  CONCLUSIONS 

The models required to produce a system for conversa- 

tional design of a class of stochastic service systems have 

been described, along with much of the framework  of 

attitudes and viewpoints which are necessary.  This rep- 

resents  a start, and was intended to show the nature of 

the work involved in the creation of such a system.  It 

also represents a good example of the problems likely 

to be encountered in virtually any network-oriented 

(i.e., symbolic, graphical) conversational programming 

system, and the philosophies necessary to their solution. 

We have shown how the characteristics of an algebraic 

network model for Markovian queueing systems are related 

to the needs of a programming system for conversational 

design of stochastic service systems.  This model represents 

the beginnings of a mathematical system upon which a use- 

ful theory can be built.  It also outlines, abstractly, 

the data structures and procedures of useful programming 

systems, one example of which is described in (3). 

Within this framework, major portions of a specialized 

model for simple queueing networks have been described 

(Section 8).  This model can be used to describe and translate 

a wide array of useful queueing networks, and to permit them to 

be numerically solved.  Nevertheless, it represents only 
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one   such   model   which   car   be   constructed   within   the 

framework   developed.      There   are   many   meaningful   elements 

which   were   not   representable   in   the   simple   model,   but which 

can   be   described   in   terms   of   functional   relationships 

among   the   conditions,   controls,   and   events.      An   example 

of   an   element   which   cannot   be   represented   in   the   model 

of   Section   8   is   bulk   server,   which   completes   tasks   in 

groups   of   varying   size.      Models   which   permit   such   an 

element,   and   others,   to   be   represented   must   be   developed 

separately   as   experience   with   the   present   model   is   gained. 
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